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Abstracts of Papers to Appear in Future Issues

FiniTE ELEMENT NUMERICAL MODELING OF STATIONARY Two-DIMENSIONAL
MAGNETOSPHERE WITH DEFINED BounDary. M. D, Kartalev, and M., S,
Kaschiev, Bulgarian Academy of Sciences, Softa, 1113 Bulgaria, D. K.
Koitchev, Sofia University “‘St. KL Ohridsky,”” Softa, Bulgaria.

A finite element numerical procedure is developed for two-dimensional
medeling of stationary magnetosphere. The whole magnetic field is supposed
to be a sum of given internal fields and a searched divergent-free and curl-
free field of the magnetopause sHielding current system. The boundary condition
on the given boundary is the Neumann one on the magnetopause part of the
computational region boundary and the Dirichiet condition on the segment
part, closing this region at the tail. The algorithms used for automatic grid
generation and grid transformation allow wide flexibility in determining the
region shape and the assigned internal fields. Some numerical implementations
not only demonstrate the method capabilities. In the frame of the two-dimen-
sional approach these immplementations could be considered as a tentative simu-
lation of some typical features of magnetosphere magnetic field topology,
which is intriasically three-dimensional, The magnetopause geometry influence
on the cusp inclination is shown. The impact of the northward and the flow-
aligned field on dayside merging and tail asymmetry is aluminized. A two-
dimensional approach to modeling the crosstail currents is proposed for the
Earth-type and Uranus-type magnetospheres.

STRATEGIES FOR THE ACCURATE COMPUTATION OF POTENTIAL DERIVATIVES IN
Bounpary ELEMENT METHOD: APPLICATION TO Two-DimMENSIONAL PROB-
LEMS. Hajime Igarashi and Toshihisa Honma, Department of Electrical
Engineering, Foculty of Engineering, Hokkaide University, Sapporo,
060, Japan.

This paper describes two strategies for the accurate computations of potential
derivatives in boundary element methods. The first method regularizes the
quasi singularity in a fundamental solution by referring the potential and its
derivatives at the boundary point nearest to a calculation point in a dorain.
In the second method, a system of coupled equations for an unknown potential
and its derivatives at a calculation point is solved to improve accuracy. Green's
theorem unifies the derivation of the above metheds, which are shown to be
suitable for computer implementation. Numerical results show that the present
methods considerably improve the accuracy in the computations of potential
derivatives. The errors in the present methods are analyzed to evaluate their
performance for general cases. Although this paper describes the regularization
methods for only two-dimensional problems, it is suggested that those can be
easily extended to three-dimensional problems.

AcCURATE Finrmre DIFFERENCE METHODS FOR TIME-HARMONIC WAVE PROPAGA-
TioN. Isaac Harari, Tel-Aviv University, Ramat Aviv, Israel. El Tutkel,
Tel-Aviv University, Ramat Aviv, Israel and Institure for Computer Appli-
cations in Science and Engineering, NASA Langley Research Center,
Hampton, Virginia 23681, U.S.A.

Finite difference methods for solving problems of time-harmonic acoustics
are developed and analyzed. Multi-dimensional inhomogeneous problems with
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variable, possibly discontinvous, coefficients are considered, accounting for
the effects of employing non-uniform grids. A weighted-average representation
is less sensitive to transition in wave resolution (due to variable wave numbers
or non-uniferm grids) than the standard pointwise representation. Further en-
hancement in method performance is obtained by basing the stencils on general-
izations of Padé approximation, or generalized definitions of the derivative,
reducing spurious dispersion, anisoiropy, and reflection, and by improving the
representation of source terms. The resulting schemes have fourth-order accu-
rate locat truncation error on uniform grids and third order in the non-uniform
case. Guidelines for discretization pertaining to grid orientation and resclution
are presented.

Mesn ErrEcTs FOr ROssBY WavEs. John K. Dukowicz, Theoretical Division,
Group T-3, Los Alamos National Laboratory, University of California,
Los Alamos, New Mexico 87545, UJ.S.A.

Dispersion relations are abtained for Rossby waves on Arakawa grids A—
E. The discretization accuracy is compared for both inertia—gravity and Rossby
waves in terms of ‘‘domains of accuracy’” for a given level of percentage
error. In particalar, the B-grid appears to be superior to the C-grid for the case
of both resolved and under-resolved Rossby radius. This is in contrast to the
well-known situation for inertia—gravity waves where the B-grid is inferior
for the case of resolved Rossby radius.

THE MeTHOD OF SPACE-TiME CONSERVATION ELEMENT AND SoLUTION ELE-
MENT—A NEW APPROACH FOR SOLVING THE NAVIER—STOKES AND EULER
EquaTions. Sin-Chung Chang, NASA Lewis Research Center, Cleveland,
Ohio 44135, US.A.

A new numerical framework for solving conservation laws is being devel-
oped. This new framework differs substantialty in both concept and methodol-
ogy from the well-established methods, i.e., finite difference, finite volume,
finite element, and spectral methods. It is conceptually simple and designed
to overcome several key limitations of the above traditional methods. A two-
level scheme for solving the convection-diffusion equation

dulfdr + a duldx — p dwlax* =0 (w=10)

is constructed and used to illuminate major differences between the present
method and those mentioned above. This explicit scheme, referred to as the
a-p. scheme, has two independent marching variables 47 and ()] which are
the numerical analogues of i and du/dx at (j, n), respectively. The a-p scheme
has the unusual property that its stability is limited only by the CFL condition,
i.e, it is independent of g. Also it can be shown that the amplification factors
of the ag-p scheme are ideatical to those of the Leapfrog scheme if g = 0,
and to those of the DuFort—Frankel scheme if @ = 0. These coincidences are
unexpected because the a-u scheme and the above classical schemes are derived
from completely different perspectives, and the a-u scheme dees not reduce
to the above classical schemes in the limiting cases. The g-u scheme is extended
to solve the 1D time-dependent Navier—Stokes equations of a perfect gas.
Stability of this explicit solver also is limited only by the CFL condition. In
spite of the fact that it does not use (i) any techniques related to the high-
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resolution upwind methods, and (ii) any ad hoc parameter, the current Navier—
Strokes solver is capable of generating highly accurate shock tube solutions.
Particularly, for high-Reynolds-number flows, shock discontinuities can be
resolved within one mesh interval, The inviscid (& = 0} a-u scheme is
. reversible in time. It also is neutrally stable, i.e., free from numerical
dissipation. Such a scheme generally cannot be extended to solve the Euler
equations. Thus, the inviscid version is modified, Stability of this modified
scheme, referred to as the g-g scheme, is limited by the CFL condition
and 0 < £ = 1, where £ is a special parameter that controls numerical
dissipation. Moreover, if & = 0, the amplification factors of the a-g scheme
are identical to those of the Leapfrog scheme, which has no numerical
dissipation. On the other hand, if £ = 1, the two amplification factors of
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the ag-£ scheme become the same function of the Courant number and the
phase angle. Unexpectedly, this function alse is the amplification factor of
the highly diffusive Lax scheme. Note that, because the Lax scheme is
very diffusive and it uses a mesh that is staggered in time, a two-level
scheme using such a mesh is often associated with a highly diffusive
scheme. The a-g scheme, which also uses a mesh staggering in time,
demonstrates that it can also be a scheme with no numerical dissipation.
The Euler extension of the a-&£ scheme has stability conditions similar to
those of the a-g scheme itself. It has the unusual property that numerical
dissipation at all mesh points can be controlled by a set of local parameters.
Moreover, it is capable of generating accurate shock tube solutions with
the CFL number ranging from close to 1 to 0.022.



